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Abstract. One of the most commonly used methods for deriving formulas for 
bivariate interpolation is that of extending to two variables the formulas 
of Lagrange, Aitken, Newton, Gauss, Stirling, Everett, Bessel, etc., in which 
forward, backward and central-differences are used. These formulas have the 
property that the resultinig interpolation polynomial agrees with the interpolated 
function, f(x, y), at each of the node points of a Cartesian grid. In this study, we 
shall investigate the existence of a wider class of interpolation formulas, together 
with their associated error terms, than those obtainable by the method just de- 
scribed. To this end, we develop a bivariate osculatory interpolation polynomial 
which not only agrees with f(x, y) in function values at each of the node points of a 
Cartesian grid but which also enjoys the property that agreement in values of 
partial and mixed partial derivatives up to specified, arbitrary orders is obtainable 
at these points. The result is essentially a bivariate generalization of Hermite's 
interpolation formula. 

1. Introduction. The classical interpolation problem is concerned with approxi- 
mating a function f at n distinct points, xI, x2, , x. by a polynomial of degree 
n - 1 which has the property that it is in agreement with the function values at 
each of the points x. 

In certain cases, values of both f(x) and its derivative f'(x) are available at the 
n points, x1, , x,n . In this case, resort can be made to the well-known Hermite 
interpolation formula (sometimes referred to as the formula for osculating interpo- 
lation). Hermite's formula yields a polynomial of degree 2n - 1 which passes 
through the given points with given slopes. 

The purpose of this paper is to develop an osculatory interpolation polynomial 
of two variables which agrees with a function, f(x, y), in values of partial* and 
mixed partial derivatives up to specified, arbitrary orders at each of the n2 node 
points of a rectangular grid formed by the intersection of the vertical lines x = 

XI, X2, ., xnand the horizontal lines yy= yI, y2, , yn . 
One would expect that interpolation formulas of the type just described would 

be considerably more accuratet than ordinary n2 point formulas for bivariate 
interpolation because we have essentially concentrated many more conditions into 
the same amount of space. Thus, if N conditions are met on the derivatives at 
each of the n2 node points, we may regard our interpolation formula as sort of a 
confluent form of an Nn2-point formula, having effectively packed the Nn2 argu- 

Received June 7, 1963, revised October 22, 1963. 
* In this paper whenever we refer to partial derivatives, we shall mean straight partial 

derivatives as opposed to mixed partial derivatives. 
t The truth of this statement becomes evident when one considers, in the univariate case, 

the relative merits of osculatory interpolation to that of Lagrange interpolation formulas. 
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ments into a space containing n2 points. This should result in considerably greater 
accuracy as n increases. 

From the point of view of machine computation, an interpolation formula 
involving only partial derivatives, and not mixed partial derivatives, would appear 
to be more feasible. This is true because many and varied techniques exist for 
approximating partial derivatives with respect to x or y over a Cartesian grid. 
Actual computation merely amounts to holding one variable fixed and using well- 
known numerical differentiation formulas to obtain the partial derivatives at each 
of the grid points. 

However, based upon the literature, it appears futile to search for a general 
bivariate osculatory interpolation formula which contains no mixed partial de- 
rivatives and which will fit the function f(x, y) and its first partial derivatives at 
the node points of a Cartesian grid. For example, Salzer and Kimbro [5] have dis- 
covered the surprising fact that for most of the simpler configurations of (xi, yi), 
if not in general, it is impossible to fit a polynomial P(x, y) to f(x, y) and its first 
partial derivatives at a set of arbitrarily chosen points (xi, yi), even when the 
total number of conditions invoked at all of the points is exactly equal to the 
number of coefficients in the general form of the selected P(x, y). Experimenting 
primarily with complete binary m - ic's, Salzer and Kimbro found that the only 
way in which any success at all could be had was to artificially modify the binary 
m - ic by the addition of one or more higher degree terms, thus relegating the 
interpolation polynomial to an incomplete binary m - ic. Even then, however, 
they found many exceptional configurations of (xi, yi) for which no bivariate 
first order osculatory interpolation (no mixed partial derivative conditions) was 
possible. For the specialized formulas they have developed, Salzer and Kimbro 
derived no closed expression remainders but in lieu of this they give formulas for 
dominant remainder terms. 

In this present paper we shall circumvent some of the problems encountered by 
Salzer and Kimbro by requiring the use of mixed partial derivatives and insisting 
that all n2 node points of the Cartesian grid be utilized. The latter fact is equivalent 
to saying that our formula will be less general. 

Specifically, the purpose of this paper is to generalize the generalization of 
Hermite's formula in one variable to an analogous formula in two variables x and 
y. We shall include a closed form expression of the error of interpolation. 

2. A Uniqueness Theorem. In this section we establish a theorem whose results 
will be required in subsequent discussion. In proving this theorem we shall rely 
heavily upon the followinig lemma due to Walsh [8]. 

LEMMA 1. Let the distinct points z1 , Z2, * Zk and values wj0?, w( * * ( *) j . (m, ) 

j = 1, 2, * *, k be given. Then there exists a unique polynomial p(z) of degree 
k 

n= -1+ (m + 1) 
j=4 

which satisfies the conditions 
(v) v 

p (zj) = wj v = O, 1,* **,mj; j = , 2,* ,. 
The theorem which we are about to prove is essentially a two-dimensional analog 
of the lemma just stated. 
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THEOREM 1. Let f(, ) be given numbers where p and q run from 0 to k - 1 and 
r and i rubn from I to n; let (xr, yi) be n2 distinct points for 1 < r < n, 1 < i < n. 
Then there exists a unique polynomial Q (x, y) of degree not exceeding nlc 1 in x 
and of degree not exceeding nk - 1 in y such that 

P+2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 2 
( 1) axp Q(r i)= r 

(p, q = 07 7 k 
G1 ,i=1 ,n 

Proof. The system of Equations 1 is a system of k2n2 equations in the k 2n2 

unknowns which are the coefficients of Q(x, y). Hence the existence of a solution 
for these coefficients will be guaranteed if their uniqueness is established, i.e., if 
the matrix of (1) possesses an inverse. 

Suppose that another polynomial, S(x, y), of degree not exceeding nk - 1 in 
x and of degree not exceeding nk - 1 in y and having the desired properties given 
by (1) does exist. Then S(x, y) - Q(x, y) _ T(x, y) is a polynomial of maximum 
degree nk - 1 in x and nk - 1 in y which satisfies the conditions 

(2) _p+q T(xr Yi) = ? 
0xp0ayqT(rY)= 

where, as before, p, q, r and i are allowed to take on all values given in (1). For 
brevity let us make the following definition 

U (x,y) p T(x, y), (p = 0,1, *l ,-). 

If use is made of (1), one notices that along the fixed vertical line x = xr, 

aq aP+q 
(3) a U,(XrrYi) = T(xr,Yi) = 0 (q =0,1, **,k-1;i=1,2,* ,n). 

Thus, according to the results of Lemma 1 we deduce directly from (3) the result 

(4) a T(xr v Y) = 0 (for all y; r = 12 , n). 

We recall that the degree of T(x, y) in x does not exceed nk - 1. This fact, coupled 
with the fact that each of the k derivatives in x of T(x, y) vanishes for each of the 
values xi, x2, I...*, xn, for each value of y (in accordance with (4) ) enables us to 
once again directly apply Lemma 1 to obtain the result 

(5) T(x, y)- 0 (for all x and all y) 

Thus, S(x, y) = Q(x, y) everywhere. 

3. Interpolation for Functions of Two Variables. Patterning an analysis after 
that due to Walsh [8] we shall develop a polynomial interpolation formula for a 
function of two complex variables. Let us first make the following definitions: 

(6) a'(z) = a(z)(z z- Zn)( Zn+2) . (Z - Zkn) 

and 

(7) :(w) = 13(w) (w - wn+l) (w - Wn+2) 
. (W - Wkn) 
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where 
n 

(8) a(Z) = (z - zi) 

and 
n 

(9) 13(w) =H (w-w3j). j=1 
Define now a polynomial of degree nk -1 in z and nk - 1 in w as follows 

(10) Q(z w) = [o(s)(s-z) _________ 

Now if the polynomial Q(z, w) (whose coefficients are clearly functions of s and t) 
is multiplied by [1/(27ri)2]f(s, t)ds dt and integrated with respect to s and t over 
arbitrary closed Jordan curves Ci in the complex s-plane and C2 in the complex 
t-plane, where f(z, w) is an arbitrary function analytic simultaneously in z and w 
for z on and within Ci and w on and within C2, the result is still a polynomial in z 
and w of degree not exceeding nk - 1 in either variable. If we choose Ci to contain 
the points z1, Z2, , * Zkn in its interior and similarly choose C2 to contain the 
points w1, W2, *, Wkn in its interior, while z and w lie within or on C1 and C2 
respectively, we obtain the polynomial 

(1) w] I ()(z w) = L]s]IzfC2 f (s t) ds dt. 

We notice that even if z lies on Ci or if w lies on C2, the integrand has no singularity 
for in the limit as s approaches z and/or t approaches w, the integrand involves 
either or both of the terms 

( 12) lim &(s) - &(z) = &(z) 
s>z a(s)(s -z) -f(z) 

and 

(13) lim (t) - (w) '(w) 
t w A(t) (t -w) 0(w) 

which are finite since a&(z) 5 0 for z on C1 and f(w) 5 0 for w on C2. 
Let C1 be a closed Jordan curve enclosing a simply connected region of the 

complex variable s which contains the point z. Let C2 be a closed Jordan curve 
enclosing a simply connected region of the complex variable t which contains the 
point w. Then Cauchy's integral formula can be easily extended to give the result 

(14) f(z, w) = ( L(S)t-) ds dt. 
72(s -z) (t- w) 

With the use of (14) the integrand in (11) may be expanded to obtain the result 

f(z w)-q(z w) = &2(z) f f(s, w) ds + 2dri C2 f(zt) dt 
2(ri 5)) (s -z) l '(t) (t - W) 
(15) 

__~~~~~~~a t(z) ,(w) I' ff(s, t) ds dt. 
(27ri)2 J1 h2 a5(S) (t) (S - Z) (t - W) 
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The right-hanld expression of (15) is therefore the error resulting from approxi- 
mating the function f(z, w) by the polynomial q(z, w). 

Particular notice of the terms of the right-hand expression of (15) reveal the 
important fact that f(z, w) and q(z, w) coincide at the k2n2 point pairs (zi, wj), 
(1 _ i, j < kn), whether or not the zi's and wj's are distinct for the three contour 
integrals are all analytic as long as z is interior to C1 and w is interior to C2, hence 
analytic at each of the point pairs (z , wj) irrespective of the multiplicities of either 
the zi's or the wj's. Consequently, we may consider the limiting case when the 
points zi and wj nearly coincide with the adoption of the notation 

(16) WN+S WS + A} 
(N = n, 2n, ,kn -n; r, s = 1, 2, ,n) 

Introducing the notation of (16) into (15) with reference to (6) and (7), and 
letting et -* 0 and 5j -O 0, there follows 

f(z, w) -(z, w) [a (z)] f(s ,) ds f ~~~~2iri c~[a(sjlk(s - z) d 

(17) IO~~~~[1(w)lk 
f fZ, t) dt 

( 17) + 27ri C2 [3(t)31(t - w) 

[az)f3(W)1 ff fQ9,I t) d.s dt. 
[27ril2 c; c2 [a(s)t(t)]k(s - z)(t - W) 

If we specialize (17) to the case where z, w, zi and wj are real by setting z = x, 
w = y, zi = xi and wj = yj ,* there follows directly 

f(x, y) - q(x, y) = [X(X)ilk f f(s, - d 
2iri Ci[X(s)11k(S - X) 

(18) ? ~~~~~~[M(y)]k f f(x, t) d 
21ri C2 [A(t)]k(t - y) 

[X(Xu(Y)] f| 1 f(s, t) ds dt 
[2w-i]2 c1 C2 [X(S)A(t)]k(S - X) (t -y 

where we have made use of the defining equations 
n 

(1t9 ) XA(x )= Q(x -xi) 

and 
n 

(20) (Y) = (y - yj). 
j=1 

With the specialization of (17) to (18) we should not overlook the rather 
obvious fact that the values xl, X2, * xn and x lie interior to C1 and the values 

Yi,1 Y2 * ' ' 
' , Yn and y lie interior to C2. 

*We shall define the polynomial q(x, y) to be that polynomial obtained from q(z, w) by 
the replacement of z, w, zi and wj with the indicated substitutions. 
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4. The Generalization of Hermite's Formula. We state here the general iresult 
which is to be proved. 

THEOREM 2. Let f(,v) Xr and yi be given real numbers where u and v run from 
0 to k - 1 and r and i run fromr 1 to n. Then the polynomial q(x, y) of degree not 
exceeding nk - 1 in x and of degree not exceeding nk - 1 in y such that 

a( q(x, y) l f (UV) 
AXOaY/ X=xr,Y=Yi 

is given by 

q(x,~~ 
~ n) =nXX'4y 

k-1 k-1 

1=)]2E E Z Z Mi,r,v,u(X,Y) f(U,v) 
[( - 1) i=1 r=1 v=O u=O 

where 

Mi,r,v,u (x, Y) (k l) 1)[Ds k-l-ut ] [D k-l-v Bt] 

with 

Ar(s) = (s - x)[(s - X1)(S - X2) ... (S Xr_1)(S Xr+i) (S -X)]k, 

Bi(t) = (t - y)[(t -yl) (t -y2) ... (t -yi_l)(t 
_ 

yi+J) ..(t _ 
Y.)]k 

and D, and Dt are the operators of differentiation with respect to s and t. 
Remark. If q(x, y) is the polynomial approximation (interpolation polynomial) 

to a function f (x, y) then the formula becomes 

qx )=[X(X)'4(y)]k ck-1 kc-1 Ou?v 
q(x, [) 

= 
- ) E E E E 

Mj?,rv,u(X, Y) f(Xr , Y0. 
Kk 

- I=-11 1=1 v=o u=o axuoyv 

5. Proof of the Theorem. In proving the theorem we shall rely upon the results 
already established in Sections 2 and 3. In particular we shall show that applica- 
tion of residue theory from complex variables, when applied to (18), yields the 
results of the theorem. Finally, Theorem 1 is used to establish the uniqueness of 
the formula thus found thereby completing the proof. 

From elementary theory of complex variables we recall the residue theorem 
which states that if g(z) is analytic on and within a closed contour C, with the 
exception of a finite number of singular points zi, Z2 , , zn interior to C, then 

fg(z) dz = 27ri(Ki + K2?+ + KJ) 

where the integral is taken counterclockwise around C where K1, K2, * Kn 
denote the residues of g(z) at those points. A well-known technique for computing 
the residues for poles of any order may be found in [2], for example. 

Let f(z, w) be a function jointly analytic in z and w for z on and within a contour 
C1 in the complex s-plane and for w on and within a contour C2 in the complex 
t-plane such that x1, X2, , x1 lie within C1 and yi, Y2, , yn lie within C2 so 
that 

au+vf(z w) f(U,V) 
azUawv z=xr ,W=Yi 
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For example, f(z, w) could be taken as the polynomial q(z, w) itself, since the 
existence of q(z, w) has been established in Theorem 1. 

If the integral in the last term of the right-hand expression of (18) is written as 

1 [f ~~f(S, t) 1td 
[X(S)]1c(S 

- x) 2[,J.t)]k(t - ) dtj ds, 

then the residue theorem may be invoked first upon the integral in the brackets 
and secondly upon the integral over the closed curve C, in the s-plane. Evaluating 
the first two terms in the right-hand expression of (18) in the obvious manner with 
the use of the residue theorem and the last term as just indicated, f(x, y) con- 
veniently drops out and one obtains after considerable simplification the result 

(21) q(x, y) = [ (x).(Y)]k[ E Hr(i)] 

where 

(22) H(i) = liM dkl J(s - Xr) Ki(s, y)} 
S-rd-Skl [X(S)]k(S - X)J 

and 

(23) K(s y) lim dkl (t Y)kf(s, t)} 

Let us adopt the notations 

(24) (s - x)[X(s)]k/(s - Xr) = Ar(S) 

and 

(25) (t - y)[4(t)]k/(t - yi)k = Bi(t), (t - y)[4(t)]k =3i(t) 

Thus, since f(s, t) is analytic at t = yi for all s and 3i(j)( = 0 for = 0, 1, 2, 
* * *, k1, Ki(s, y) can be written as 

Ki(s, y) = lim dkl 

(26) f(S yi) + f(s, yi)(t - yi) + . + f()(s, Y - yi-)/n! + ** 
f B(k)( i) + ,k+1)(Yi)(t _- Vi) ? + frlk+i)(yi)(t - yi)nlk+lk 

C k! (k + 1)1 (nk + 1)! ) 

Using Leibnitz' formula [4, p. 66] to evaluate the right-hand expression of (23), 
(or (26)), we obtain 

(27) Ki(s, y) = ( v ) 
dtk-l-v {Bi( yi)} dvF( ' Y 

If we now insert Ki(s, y), as given by (27) into the right-hand expression of 
(22) and recall that f(s, yi) is analytic at s = Xr, then Taylor's series and Leibnitz' 
formula can be used as before to obtain the final expression for Hr(i)2 

H() k-1 k-1 k - l)(k- 1) k-l-v{ 1} 

(28) Ds {A (x}v=O u=O v U Bi(yi)} 

k-i-u 
a+ (28) 

{Ar(Xr)}As 0uay f(Xr, 2YJ (i, r, =1, 2, 
n)., 
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where Dt and Ds are derivative operators representing differentiation of Bi(t)-1 
and Ar(s)-1 with respect to t and s respectively. 

Referring now to (18) we notice that q(x, y) is a polynomial of degree kn - 1 
in x and kn - 1 in y satisfying the k2n2 conditions 

(29) ...q( 7rY - fri) (u,v = 0,1, * , 7 - 1; r, i = 1, 2,***, n). 
a3XuOyv X=XY-Y 

)1 

Thus in accordaniee with the results of Theorem 1, we are able to establish the fact 
that*q(x, y) given by (21) anid (28) is unique. Moreover, simple inspection of 
(21) and (28) reveals that the q(x, y) so given is identical in form to that given by 
the theorem and our proof is complete. 

6. Hermite's Formula for Two Variables. We shall now proceed to illustrate the 
results of the previous section by applying them to the specific case of Hermite's 
formula for functions of two variables [1, p. 32]. 

According to (21) and (28), Hermite's formula for functions of two variables is 
given as 

q(X, y) = [X(x)p(y)] [D {A(x) Dt f(Xr Y 

i1r=i 
Xr 

1i ry1i) 
+ D, f(Xr~~, Yi) ? 

I t f(Xr, Yi 
Bi(yi) Ar(Xr)) ay Ar(Xr) {B(-y)} aOx 

+ Ar~(xr) B(yi) Oxay f(Xr2 Yi)j. 

Evaluating the terms involving derivatives by the repeated use of L'Hospitals 
rule, we obtain, finally 

n n n n 

f(x, y) ~ q(x, y) = E hr(X)gi(Y)f(Xr Y Yi) + E Z hr(X)gi(Y) f(Xr , yD 
i r=1 = r ay 
n n an n a2 

+ Z Z hr(X)gi(Y) a- f(xr, yi) + Z Z hr(X)gi(Y) a f(Xr yi) 

where we have abbreviated 

hr(X) = [1 - 21r'(Xr)(X- Xr)][lr(X)] 

hr(X) = (x- Xr)[lr(X)]2 

gq(y) = [ -2mj (y )(y -yi)][mi(y)]2 

gi(y) = (y -Yi)[mi(y)]2 

and lr(X) and mi(y) are the Lagrangian coefficient functions defined as 

I 
(X) 

= X(x) 

-(X - Xr)X'(Xr) 

m i(y) = ___ ___ ___ 

(y- yi)i'(Yi) 

where X(x) and ,(y) are given by (19) and (20). 
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It is a simple matter to verify that the four conditions invoked upon q (x, y) 
in (29) for u, v = 0, 1 at each of the points xr, yi are satisfied by the expression 
derived for q(x, y) above. Thus, the results of Theorem 1 enable us to say that no 
other polynomial in x and y of degree 2n - 1 in each x and y and satisfying the 
desired conditions, exists. 

7. Specialization to Functions of One Variable. Suppose that one wishes to 
generalize Hermite's formula for functions of one variable such that a polynomial 
is formed which has the properties that it is in agreement with f(x), f'(x), 
... ,f(k) (x) at each of the n points x1, X2, **, xn . From Lemma 1 we know that 
only one such polynomial of degree nk - 1 in x exists. 

Using an approach involving the use of contour integrals, and identical in 
technique to that used in the derivation of Theorem 2, we obtain the one variable 
analogue, p(x), of q(x, y) 

n k-1 

(30) f(x) p(x) = E E Z (x)S )(xi) 
i=1 j=O 

where 

(31) C%J (kl) ! ( 1 ) DI(A,(xi)} 

and all the symbols utilized in (30) and (31) have been previously defined. One 
can easily verify that p(x) in (30) resolves itself into Hermite's formula [4, p. 316] 
with k = 2. 

Spitzbart [7] has found that Cij in (30) is given by the formula 

c=[X(X)]k(X _ Xi)jk k-l-i 1 [Dt {Q k) x-x 
Cij 

= @ E1 [!D(t) (X 
- i 

=Xi) 
}x ] 

xi( 

where the derivative operator indicates differentiation with respect to x. That 
Cij _ Cij is evident from the results of Lemma 1. However, it is not obvious that 
this equivalence holds as Cxj contains a summation and is not nearly as compact in 
form as Cij. 

Schweizer [6] makes use of the results of Jacobi series to derive a formula for 
p (x) in terms of the divided difference of f of order nj, in which the arguments 
xl, , Xi-2, xi1I, xi+1, , xn are repeated j times and the argument xi is 
repeated j + 1 times, 

k (1 n . ,xj-i-1 
) E { f[Xl', , , , x.] dXx) }[1 (x)i 

j=O i=1 X - Xi 7 i 

This expression is symmetric in the xi and is identically equal to the expression 
given for p(x) in (30). As it stands, Schweizer's formula is not in a particularly 
useful form since it does not involve an explicit representation of the interpolation 
polynomial. Algorithms for reducing Schweizer's formula to that of Spitzbart's 
may be found in the literature. See for example [4, p. 40] and [7, p. 44]. 

For a discussion of the remainder term associated with (30), the reader is 
referred to the work of Fort [3] in which interpolation is obtained in a form which 
involves an iterative process. 
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8. Error Analysis. As stated previously, the right-hand expression of (18) is 
the error resulting from approximating the function f(x, y) by the polynomial 
q(x, y). This expression may be more compactly written as follows: 

f(x, y) - q(x, y) E(x, y) 

(32) ( 21 f f [X(S)(y)lk [(x)(t)]k - [X(x)(y)]k fs t) d dt 
\2iri J1 c2 [()jt)]k(S - X)(t - y) f(,tdst 

where the contours Ci and C2 are as previously defined. 
No attempt will be made here to establish rigorous error bounds for the error 

expression (32). Perhaps one possible approach for establishing a bound on the 
error expression is to make use of a trivial extension of the important theorem 
from complex variables (cf., Churchill [2, p. 100]) which says that if M is the upper 
bound of g(z) on the curve C and L is the length of C, then 

f g(z) dz ? ML. 

By experimenting with various contours C, satisfying the necessary criteria (see 
Section 3) imposed upon them, one should be able to establish a "least conservative" 
upper bound for (32). 

In those cases when the integral changes sign frequently, as in many integral 
formulas for remainders, the method described above may tend to be very much of 
an over-estimation. In such cases the use of the dominant term in the Taylor ex- 
pansion, or a possible application or extension of Montel's work in the complex 
plane for one variable to several real variables may be preferable. 
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